本文内容以关键词气象检测设备为核心展开讲解,通过阅读本文你将充分了解关于地面气象检测设备、气象观测设备型号、气象监测设备厂家、温度检测设备、气象设施设备的相关问题。

文章目录

  1. 地面气象检测设备
  2. 气象观测设备型号
  3. 气象监测设备厂家
  4. 温度检测设备
  5. 气象设施设备

地面气象检测设备

现代科学技术的发展为现代的天气预报提供了先进的装备,先进的气象卫星、遍布各地的雷达站网络,以及能运算复杂天气模型的强大的超级计算机系统,使天气预报的准确性大大提高。

20世纪70年代末,日本使用了气象卫星,不仅从高空可以收集到各种气象资料,而且使气象部门大大提高了工作效率,还提高了预报的正确程度。电视台的天气预报也由此变得生动而形象:台风眼和它的周围的云层、活动范围、方向、速度等,还有雨、雪区的移动等,一目了然。美国的领土十分辽阔,它的气象预报系统的规模更大。为了了解世界范围的气象,有四颗气象卫星提供气象信息。有两颗电视与红外线观察卫星,它们的轨道经过地球南北极的上空,卫星上的电视摄影传播云的形状和运动方向,红外照相指示出云层的高度和水汽所含的水分。另外两颗同步气象卫星位于赤道上空对地静止的轨道上,在固定点定时拍摄地球的照片。此外,有几百个小型资料收集装置设在飞机、轮船、浮筒或充氦气球上。这些收集装置的传感器会自动测出各地的风速、温度、湿度和气压等。还有70多个雷达站遍布全国,对雷暴和旋风进行跟踪。有一种多普勒雷达系统是先进的气象检测设备。这个系统向周围半径为200千米的各个方向发射波束,通过检测大气中的水滴、草籽、尘土、昆虫等的运动,来测量同地面平行的各个水平面上的风速、风向。它作出的天气预报十分具体:哪一个地方,几点到几点钟将降落多少毫米的雨。如果局部地区在几分钟内将发生突然的气流变向,多普勒雷达系统也能作出相当准确的预报。另一种激光多普勒雷达——“莱达”,是一种监视地面气象状况的新装置。它装在极地轨道卫星上,每天可测取两次风速。如果有两颗卫星装有“莱达”,这可以监测整个地球的大气状况。采用“莱达”系统以后,可以使7~10天的中期天气预报,同目前的24小时的预报一样准确。航空公司也能从“莱达”获益,因为驾驶员有了详尽的当时的气流图,就可以利用快流风,避开迎头风,既可节省时间和燃料,还可保证飞行安全可靠。近年来,气象工程中的一项重大突破是风向模拟系统的投入使用。模拟系统用一雷达束对1.6~14.4千米范围内的风向和风速做连续测量,并沿竖直方向每隔100米取一个风速风向数据,每平方千米可采集到上百项数据。在监视器的屏幕上显示出来:一些五颜六色的箭头,以颜色、长度和方向,分别代表那高度、风速和风向。电脑很快地将几小时前输入的数据以及卫星资料作相互比较,在屏幕上显示出当地的小气流的运动,把预报局部小气候的精度提高到前所未有的水平。设在马里兰州的计算机天气模型,根据从世界各地传送来的气象数据,包括风向、风速、温度、湿度、气压等。从全国650个气象气球的高空测候仪采集到了气象数据,全部集中发送到静止轨道上的工作卫星上,然后从太空发回卫星地面接收站,再由地面站送到气象中心。各地浮筒或机载的收集装置所记录的信息几分钟后便汇集中心,许多电脑神速处理各种数据,从而对当时的天气形势形成一个数学的描述。美国的气象中心每天向各主要预报中心发出2000个这样的报告,再通过它们向各地方机构传送。各地气象台再结合最新的卫星图像与地面测定的数据,结合各自的经验,发布出当地的天气预报。这种预报已相当准确了。

气象观测设备型号

雷达风筝是一种先进的航空器,具有高度敏感的雷达系统,可用于侦查、监视和测量大气层内的风速和风向。其主要规格包括机身长度、翼展、重量、最大飞行高度、最大航程和雷达系统的性能指标等。不同型号的雷达风筝还可能具有不同的特点和用途,可以根据具体需求选择合适的型号。总之,雷达风筝的规格和性能将直接影响其在气象监测、科研探测等领域的应用效果和效率。

气象监测设备厂家

在中国就是中国气象局

温度检测设备

大气的温度简称为“气温”。我国以摄氏温标“℃”表示。

气象学上把表示空气冷热程度的物理量称为空气温度,简称气温。国际上标准气温度量单位是摄氏度(℃)。

天气预报中所说的气温,指在野外空气流通、不受太阳直射下测得的空气温度(一般在百叶箱内测定)。最高气温是一日内气温的最高值,一般出现在14-15时;最低气温是一日内气温的最低值,一般出现日出前。中国用摄氏温标,以℃表示摄氏度。一般一天观测4次,分别为02、08、14、20四个时次;部分测站根据实际情况,一天观测3次,分别为08、14、20三个时次。

可以用温度计测量。

介绍几种常用的温度计:

1、气体温度计:利用一定质量的气体作为工作物质的温度计。用气体温度计来体现理想气体温标为标准温标。用气体温度计所测得的温度和热力学温度相吻合。气体温度计是在容器里装有氢或氮气(多用氢气或氦气作测温物质,因为氢气和氦气的液化温度很低,接近于绝对零度,故它的测温范围很广),它们的性质可外推到理想气体。这种温度计有两种类型:定容气体温度计和定压气体温度计。定容气体温度计是气体的体积保持不变,压强随温度改变。定压气体温度计是气体的压强保持不变,体积随温度改变。

2、电阻温度计:根据导体电阻随温度而变化的规律来测量温度的温度计。最常用的电阻温度计都采用金属丝绕制成的感温元件,主要有铂电阻温度计和铜电阻温度计,在低温下还有碳、锗和铑铁电阻温度计。精密的铂电阻温度计是目前最精确的温度计,温度覆盖范围约为14~903K,其误差可低到万分之一摄氏度,它是能复现国际实用温标的基准温度计。我国还用一等和二等标准铂电阻温度计来传递温标,用它作标准来检定水银温度计和其他类型的温度计。分为金属电阻温度计和半导体电阻温度计,都是根据电阻值随温度的变化这一特性制成的。金属温度计主要有用铂、金、铜、镍等纯金属的及铑铁、磷青铜合金的;半导体温度计主要用碳、锗等。电阻温度计使用方便可靠,已广泛应用。它的测量范围为-260℃至600℃左右。

3、温差电偶温度计:利用温差电偶来测量温度的温度计。将两种不同金属导体的两端分别连接起来,构成一个闭合回路,一端加热,另一端冷却,则两个接触点之间由于温度不同,将产生电动势,导体中会有电流发生。因为这种温差电动势是两个接触点温度差的函数,所以利用这一特性制成温度计。若在温差电偶的回路里再接入一种或几种不同金属的导线,所接入的导线与接触点的温度都是均匀的,对原电动势并无影响,通过测量温差电动势来求被测的温度,这样就构成了温差电偶温度计。这种温度计测温范围很大。例如,铜和康铜构成的温差电偶的测温范围在200~400℃之间;铁和康铜则被使用在200~1000℃之间;由铂和铂铑合金(铑10%)构成的温差电偶测温可达千摄氏度以上;铱和铱铑(铑50%)可用在2300℃;若用钨和钼(钼25%)则可高达2600℃。

4、高温温度计:是指专门用来测量500℃以上的温度的温度计,有光测温度计、比色温度计和辐射温度计。高温温度计的原理和构造都比较复杂,这里不再讨论。其测量范围为500℃至3000℃以上,不适用于测量低温。

5、指针式温度计:是形如仪表盘的温度计,也称寒暑表,用来测室温,是用金属的热胀冷缩原理制成的。它是以双金属片做为感温元件,用来控制指针。双金属片通常是用铜片和铁片铆在一起,且铜片在左,铁片在右。由于铜的热胀冷缩效果要比铁明显的多,因此当温度升高时,铜片牵拉铁片向右弯曲,指针在双金属片的带动下就向右偏转(指向高温);反之,温度变低,指针在双金属片的带动下就向左偏转(指向低温)。

6、玻璃管温度计:玻璃管液体温度计是应用最广泛的一种温度计,其结构简单、使用方便、准确度高、价格低廉。按用途分类,可分为工业、标准和实验室用三种。标准玻璃温度计是成套供应的,可以作为检定其他温度计用,准确度可达0.05 ~ 0.1摄氏度;工业用玻璃温度计为了避免使用是被碰碎,在玻璃管外通常由金属保护套管,仅露出标尺部分,供操作人员读数。实验室用的玻璃管温度计的形式和标准的相仿,准确度也较高。

7、压力式温度计:新一代液体压力式温度计以及由此开发的系列化测温仪表,克服了原仪表性能单一,可靠性差以及温包积大的缺点,并将测温元件体积缩小到原来的1/30或1/60,创造性地将传感器热电阻安装于测温元件内,实现了机电一体化的测温功能。形成了以液体压力式温度计为基本测温仪表的远传、防震、防腐、电接点、温度信号变送等多功能系列化温度仪表。分为两个系列,普通型和防爆型。该温度计的原理是基于密闭测温系统内蒸发液体的饱和蒸气压力和温度之间的变化关系,而进行温度测量的。当温包感受到温度变化时,密闭系统内饱和蒸气产生相应的压力,引起弹性元件曲率的变化,使其自由端产生位移,再由齿轮放大机构把位移变为指示值,这种温度计具有温包体积小,反应速度快、灵敏度高、读数直观等特点,几乎集合了玻璃棒温度计、双金属温度计、气体压力温度计的所有优点,它可以制造成防震、防腐型,并且可以实现远传触点信号、热电阻信号、 0-10mA或4-20mA信号。是目前使用范围最广、性能最全面的一种机械式测温仪表。

8、转动式温度计:转动式温度计是由一个卷曲的双金属片制成。双金属片一端固定,另一端连接着指针。两金属片因膨胀程度不同,在不同温度下,造成双金属片卷曲程度不同,指针则随之指在刻度盘上的不同位置,从刻度盘上的读数,便可知其温度。

9、半导体温度计:半导体的电阻变化和金属不同,温度升高时,其电阻反而减少,并且变化幅度较大。因此少量的温度变化也可使电阻产生明显的变化,所制成的温度计有较高的精密度,常被称为感温器。

10、热电偶温度计:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题:①热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数;②热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;③当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。

11、光测高温计:它是利用热源辐射的亮度和温度的关系来测量高温的仪器。该仪器主要部分包括:望远镜M管内装一红色玻璃滤色镜F及一个小灯泡L。当光测高温计对着熔铁炉时。从望远镜里看到灯泡的黑色灯丝及后面炉火的强光。灯丝和电源E及可变电阻R串接,调节可变电阻R的阻值使适当的电流通过灯丝。直到灯丝的亮度与炉火的亮度相同时为止。如果事先在安培表A上将已知温度值刻好,则由安培表的读数就可以直接读出温度的数值。测温时,不需将仪器与被测体接触,因此光测高温计,可用来测很多金属的熔点以上的温度。物体温度若高到会发出大量的可见光时,便可利用测量其热辐射的多少以决定其温度,此种温度计即为光测温度计。此温度计主要是由装有红色滤光镜的望远镜及一组带有小灯泡、电流计与可变电阻的电路制成。使用前,先建立灯丝不同亮度所对应温度与电流计上的读数的关系。使用时,将望远镜对正待测物,调整电阻,使灯泡的亮度与待测物相同,这时从电流计便可读出待测物的温度了。

12、液晶温度计:用不同配方制成的液晶,其相变温度不同,当其相变时,其光学性质也会改变,使液晶看起来变了色。如果将不同相变温度的液晶涂在一张纸上,则由液晶颜色的变化,便可知道温度为何。

气象设施设备

气象仪器是用于气象预报、气象监测等气象服务领域的专业设备。主要有自动气象站、自动雨量站、风速风向仪、风向袋、百叶箱、温湿度记录仪、传感器、风向标、风速报警仪、风能测风仪、气象中心软件、GPRS无线传输模块等。

作者 admin

发表评论

邮箱地址不会被公开。 必填项已用*标注